Ako nájsť doménu a rozsah funkcií: 14 krokov (s obrázkami)

Obsah:

Ako nájsť doménu a rozsah funkcií: 14 krokov (s obrázkami)
Ako nájsť doménu a rozsah funkcií: 14 krokov (s obrázkami)

Video: Ako nájsť doménu a rozsah funkcií: 14 krokov (s obrázkami)

Video: Ako nájsť doménu a rozsah funkcií: 14 krokov (s obrázkami)
Video: OBSAH ŠTVORCA A OBDĹŽNIKA - ako ho vypočítam? 2024, November
Anonim

Každá funkcia má dve premenné, a to nezávislú premennú a závislú premennú. Doslova hodnota závislej premennej „závisí“od nezávislej premennej. Napríklad vo funkcii y = f (x) = 2 x + y je x nezávislá premenná a y je závislá premenná (inými slovami, y je funkcia x). Platné hodnoty pre známu premennú x sa nazývajú „domény pôvodu“. Platné hodnoty pre známu premennú y sa nazývajú „rozsah výsledkov“.

Krok

Časť 1 z 3: Nájdenie domény funkcie

Nájdite doménu a rozsah funkcie Krok 1
Nájdite doménu a rozsah funkcie Krok 1

Krok 1. Rozhodnite sa, aký typ funkcie budete vykonávať

Doménou funkcie sú všetky hodnoty x (horizontálna os), ktoré vrátia platné hodnoty y. Rovnica funkcie môže byť kvadratická, zlomková alebo môže obsahovať koreň. Prvá vec, ktorú musíte urobiť, aby ste vypočítali doménu funkcie, je preskúmať premenné v rovnici.

  • Kvadratická funkcia má tvar sekera2 + bx + c: f (x) = 2x2 + 3x + 4
  • Medzi príklady funkcií so zlomkami patria: f (x) = (1/X), f (x) = (x+1)/(x - 1), a ďalšie.
  • Medzi funkcie, ktoré majú korene, patria: f (x) = x, f (x) = (x2 + 1), f (x) = -x atď.
Nájdite doménu a rozsah funkcie Krok 2
Nájdite doménu a rozsah funkcie Krok 2

Krok 2. Napíšte doménu so správnym zápisom

Zápis domény funkcie zahŕňa použitie hranatých zátvoriek [,] a zátvoriek (,). Ak číslo patrí do domény, použite hranaté zátvorky [,] a ak doména číslo neobsahuje, použite zátvorky (,). Písmeno U označuje zväzok, ktorý spája časti domény, ktoré môžu byť oddelené vzdialenosťou.

  • Napríklad doména [-2, 10) U (10, 2] obsahuje -2 a 2, ale nezahŕňa číslo 10.
  • Ak používate symbol nekonečna, vždy používajte zátvorky ().
Nájdite doménu a rozsah funkcie Krok 3
Nájdite doménu a rozsah funkcie Krok 3

Krok 3. Nakreslite graf kvadratickej rovnice

Kvadratické rovnice vytvárajú parabolický graf, ktorý sa otvára nahor alebo nadol. Vzhľadom na to, že parabola bude pokračovať nekonečne na osi x, doménou väčšiny kvadratických rovníc sú všetky skutočné čísla. Inak povedané, kvadratická rovnica obsahuje všetky hodnoty x v číselnom riadku, pričom udáva doménu R. (symbol pre všetky reálne čísla).

  • Na vyriešenie funkcie zvoľte ľubovoľnú hodnotu x a zadajte ju do funkcie. Vyriešením funkcie s hodnotou x sa vráti hodnota y. Hodnoty xay sú súradnice (x, y) grafu funkcie.
  • Nakreslite tieto súradnice do grafu a postup zopakujte s ďalšou hodnotou x.
  • Vynesenie niektorých hodnôt v tomto modeli vám poskytne prehľad o tvare kvadratickej funkcie.
Nájdite doménu a rozsah funkcie Krok 4
Nájdite doménu a rozsah funkcie Krok 4

Krok 4. Ak je rovnica funkcie zlomkom, urobte menovateľ rovným nule

Pri práci so zlomkami nemôžete nikdy deliť nulou. Keď sa menovateľ rovná nule a nájdete hodnotu x, môžete vypočítať hodnoty, ktoré chcete z funkcie extrahovať.

  • Napríklad: Určte doménu funkcie f (x) = (x+1)/(x - 1).
  • Menovateľ funkcie je (x - 1).
  • Nastavte menovateľ na nulu a vypočítajte hodnotu x: x - 1 = 0, x = 1.
  • Napíšte doménu: Doména funkcie nezahŕňa 1, ale obsahuje všetky reálne čísla okrem 1; doména je teda (-∞, 1) U (1,).
  • (-∞, 1) U (1,) je možné čítať ako zbierku všetkých reálnych čísel okrem 1. Symbol nekonečna, predstavuje všetky reálne čísla. V tomto prípade sú v doméne zahrnuté všetky skutočné čísla väčšie ako 1 a menšie ako 1.
Zistite doménu a rozsah funkcie Krok 5
Zistite doménu a rozsah funkcie Krok 5

Krok 5. Ak je rovnica koreňovou funkciou, nastavte koreňové premenné na nulu alebo viac

Nemôžete použiť druhú odmocninu záporného čísla; preto každá hodnota x, ktorá vedie k zápornému číslu, musí byť odstránená z domény funkcie.

  • Napríklad: Nájdite doménu funkcie f (x) = (x + 3).
  • Premenné v koreňovom adresári sú (x + 3).
  • Nech je hodnota väčšia alebo rovná nule: (x + 3) 0.
  • Vypočítajte hodnotu pre x: x -3. Riešiť pre x: x -3.
  • Doména funkcie obsahuje všetky reálne čísla väčšie alebo rovné -3; doména je preto [-3,).

Časť 2 z 3: Zistenie rozsahu kvadratickej rovnice

Nájdite doménu a rozsah funkcie Krok 6
Nájdite doménu a rozsah funkcie Krok 6

Krok 1. Uistite sa, že máte kvadratickú funkciu

Kvadratická funkcia má tvar sekera2 + bx + c: f (x) = 2x2 + 3x + 4. Graf kvadratickej funkcie je parabola, ktorá sa otvára nahor alebo nadol. V závislosti od typu funkcie, na ktorej pracujete, existujú rôzne spôsoby výpočtu rozsahu funkcie.

Najľahším spôsobom, ako určiť rozsah ďalších funkcií, ako je koreňová funkcia alebo zlomková funkcia, je vykresliť funkciu pomocou grafickej kalkulačky

Nájdite doménu a rozsah funkcie Krok 7
Nájdite doménu a rozsah funkcie Krok 7

Krok 2. Nájdite hodnotu x vrcholu funkcie

Vrchol kvadratickej funkcie je vrchol paraboly. Pamätajte si, že forma kvadratickej funkcie je ax2 + bx + c. Na nájdenie súradnice x použite rovnicu x = -b/2a. Rovnica je derivátom základnej kvadratickej funkcie, ktorá predstavuje rovnicu s nulovým sklonom/sklonom (vo vrchole grafu je gradient funkcie nulový).

  • Nájdite napríklad rozsah 3x2 + 6x -2.
  • Vypočítajte súradnicu x vrcholu: x = -b/2a = -6/(2*3) = -1
Nájdite doménu a rozsah funkcie Krok 8
Nájdite doménu a rozsah funkcie Krok 8

Krok 3. Vypočítajte hodnotu y vrcholu funkcie

Pripojením súradnice x do funkcie vypočítate zodpovedajúcu hodnotu y vrcholu. Táto hodnota y udáva hranicu rozsahu funkcie.

  • Vypočítajte súradnicu y: y = 3x2 + 6x-2 = 3 (-1)2 + 6(-1) -2 = -5.
  • Vrchol tejto funkcie je (-1, -5).
Zistite doménu a rozsah funkcie Krok 9
Zistite doménu a rozsah funkcie Krok 9

Krok 4. Určte smer paraboly zapojením aspoň jednej ďalšej hodnoty x

Vyberte inú hodnotu x a zapojením do funkcie vypočítajte príslušnú hodnotu y. Ak je hodnota y nad vrcholom, parabola pokračuje v +∞. Ak je hodnota y pod vrcholom, parabola bude pokračovať na –∞.

  • Použite hodnotu x -2: y = 3x2 + 6x-2 = y = 3 (-2)2 + 6(-2) – 2 = 12 -12 -2 = -2.
  • Tento výpočet vráti súradnice (-2, -2).
  • Tieto súradnice vám ukazujú, že parabola pokračuje nad vrcholom (-1, -5); preto rozsah zahŕňa všetky hodnoty y vyššie ako -5.
  • Rozsah tejto funkcie je [-5,).
Zistite doménu a rozsah funkcie Krok 10
Zistite doménu a rozsah funkcie Krok 10

Krok 5. Napíšte rozsah správnym zápisom

Rovnako ako domény, aj rozsahy sú zapísané rovnakým zápisom. Ak je číslo v rozsahu, použite hranaté zátvorky [,] a ak rozsah číslo neobsahuje, použite zátvorky (,). Písmeno U označuje zväzok, ktorý spája časti rozsahu, ktoré môžu byť oddelené vzdialenosťou.

  • Napríklad rozsah [-2, 10) U (10, 2] zahŕňa -2 a 2, ale nezahŕňa číslo 10.
  • Ak používate symbol nekonečna, vždy používajte zátvorky.

Časť 3 z 3: Zistenie rozsahu z grafu funkcie

Zistite doménu a rozsah funkcie Krok 11
Zistite doménu a rozsah funkcie Krok 11

Krok 1. Nakreslite funkciu

Rozsah funkcie je najľahšie určiť pomocou grafu. Mnoho koreňových funkcií má rozsah (-∞, 0] alebo [0, +∞), pretože vrchol horizontálnej paraboly (bočná parabola) je na horizontálnej osi x. V tomto prípade funkcia obsahuje všetky kladné hodnoty y, ak sa parabola otvára, alebo všetky záporné hodnoty y, ak sa parabola otvára smerom nadol. Frakčné funkcie budú mať asymptoty (čiary, ktoré nie sú nikdy prerušené priamkou / krivkou, ale sú priblížené k nekonečnu), ktoré definujú rozsah funkcie.

  • Niektoré koreňové funkcie sa začnú nad alebo pod osou x. V tomto prípade je rozsah určený číslom, kde začína koreňová funkcia. Ak parabola začína na y = -4 a stúpa, potom je rozsah [-4, +∞).
  • Najjednoduchší spôsob nakreslenia funkcie je použiť grafický program alebo grafickú kalkulačku.
  • Ak nemáte grafickú kalkulačku, môžete nakresliť hrubý náčrt grafu zapojením hodnoty x do funkcie a získaním príslušnej hodnoty y. Vykreslite tieto súradnice do grafu, aby ste získali predstavu o tom, ako graf vyzerá.
Nájdite doménu a rozsah funkcie Krok 12
Nájdite doménu a rozsah funkcie Krok 12

Krok 2. Nájdite minimálnu hodnotu funkcie

Ihneď po vykreslení funkcie by ste mali byť schopní jasne vidieť najnižší bod grafu. Ak neexistuje žiadna jasná minimálna hodnota, vedzte, že niektoré funkcie budú pokračovať na –∞ (nekonečno).

Funkcia zlomku bude zahŕňať všetky body okrem bodov na asymptotách. Funkcia má rozsah ako (-∞, 6) U (6,)

Nájdite doménu a rozsah funkcie Krok 13
Nájdite doménu a rozsah funkcie Krok 13

Krok 3. Určte maximálnu hodnotu funkcie

Po nakreslení grafu by ste opäť mali byť schopní identifikovať maximálny bod funkcie. Niektoré funkcie budú pokračovať pri +∞, a preto nebudú mať minimálnu hodnotu.

Nájdite doménu a rozsah funkcie Krok 14
Nájdite doménu a rozsah funkcie Krok 14

Krok 4. Napíšte rozsah správnym zápisom

Rovnako ako domény, aj rozsahy sú zapísané rovnakým zápisom. Ak je číslo v rozsahu, použite hranaté zátvorky [,] a ak rozsah neobsahuje číslo, použite zátvorky (,). Písmeno U označuje zväzok, ktorý spája časti rozsahu, ktoré môžu byť oddelené vzdialenosťou.

  • Napríklad rozsah [-2, 10) U (10, 2] zahŕňa -2 a 2, ale nezahŕňa číslo 10.
  • Ak používate symbol nekonečna, vždy používajte zátvorky.

Odporúča: